Information sheet for the course Seminar in Mechanics of Solid Bodies

University: Alexander Dubček University of Trenčín						
Faculty: Faculty of Industrial Technologies in Púchov						
Course unit code: MI-PV-8	Course unit title: Seminar in Mechanics of					
	Solid Bodies					
Type of course unit: optional						
Planned types, learning activities and teaching methods:						
Lecture: 0						
Seminar: 2 hours weekly/26 hours per semester of study; face to face						
Laboratory tutorial:0						
Number of credits: 2						
Recommended semester:						
the 3^{rd} semester in the 2^{nd} year of the full-time form of study,						
the 3^{rd} semester in the 2^{nd} year of the part-time form of study.						
Degree of study: the 1 st degree of study (Bachelor's degree)						
Course prerequisites: none						
Assessment methods:						
During the semester, four sub-tests are written while the total number of point for each one written sub-						
test is 20 points. On the basis of the overall summary of these four tests, student has to obtain at least 75						
points to get the best evaluation mark (A – excellent). In relation to other marks referring to grading						
system, if student obtains 70 points after overall s	summary, the resulting mark is B (laudable). Mark C					
(good) in this evaluation grading system refers to 65 points: mark D (accepted results) is given to student						
who obtains 60 points after overall summary of four tests and E (pass) is given when students obtain 55						
points. If student obtains less than 55 points after overall summary of four tests, student is not given the						
predetermined number of credits and moreover if student obtains less than 12 points with reference to						
any of the mentioned four tests, the predetermined of	credits are also not given to him/her.					
Learning outcomes of the course unit:	C					
Student is able to solve the specific tasks focused of	n balance of point, balance of solid bodies, balances of					
bar constructions as well as solid body systems, p	passive resistances. Moreover, He/she is familiar with					
kinematics of point solid body and solid body systems. Student has also acquired knowledge relating to						
solution of simple tasks from mechanics including elastic or any other solid bodies. From the aspect of						
mechanics student is familiar with terms as tensile bend pressure torsion and many others						
Furthermore, student has improved his/her knowledge in relation to strength hypotheses, combined						
loading and by this way he/she is able to propose the design of the beam cross-section with the regard to						
the loading mentioned above.						
Course contents:						
The solution of tasks focused on balance of point.	solid body and solid body systems. Solution of tasks					
connected with bar constructions, solution of tasks where the passive resistances occur. Solution of tasks						
relating to dynamics of point, solid body and solid body systems. Solution of tasks including natural						
vibration frequencies and forced vibration frequencies. Study activities with beam which is under the						
tensile loading, pressure loading, bend loading and torsion loading.						
Recommended or required literature:						
1. VAVRO, J., VAVRO, J. ml.: MECHANIKA I-Statika, Fakulta priemyselných technológií so sídlom						
v Púchove, TnUAD v Trenčíne, 2011						
2 VAVRO I KOPECKÝ M · Nové prostried	a metódy riešenia sústav telies I-711SI v Žiline					

- 2. VAVRO, J., KOPECKÝ, M.: Nové prostriedky a metódy riešenia sústav telies I, ZUSI v Žiline 2001, ISBN 80-968605-0-X.
- 3. JANČINA, J., PEKÁREK, F.: Kinematika, Alfa Bratislava1987
- 4. Medvec, Stradiot, Záhorec, Caban: Mechanika III, Dynamika, SNTL Praha, 1988
- 5. CÚTH V., TÓTH Ľ.: Pružnosť a pevnosť, ES VŠDS Žilina, 1995.

Language: Slovak							
Remarks: —							
Evaluation history: /Grading system/							
А	В	С	D	Е	FX		
Excellent	Laudable	Good	Accepted results	Pass	Fail		
Lecturers: prof. Ing. Ján Vavro, PhD., doc. Ing. Ján Vavro, PhD.							
Last modification: 31.03.2014							
Supervisor: prof. Ing. Darina Ondrušová, PhD.							