Information sheet for the course Computer Modelling of Solid Body Systems I

University: Alexander Dubček University of Trančín					
Faculty of Industrial Technologies in Puchon					
Course unit ade: MLL DV 11E Course unit title: Computer Modellin					odelling of Solid
Course unit coue.	, <i>wii-i-i v - i</i>	11'	Rody Systems	e. Computer M	ouening of sonu
Type of course unit: optional					
Diannad types leavning activities and teaching methods:					
<i>L</i> acture: 2 hours weath/26 hours per semester of study: face to face					
Lecture. 2 nours weekly/20 nours per semester of study, face to face					
Jeminur. 0					
Laboratory latorial. 5 hours weekly/59 hours per semester of study, face to face					
Number of credits: 6					
Recommended semester:					
the 2^{nd} semester in the 1^{st} year of the full-time form of study,					
the 2 ^m semester in the 1 ^m year of the part-time form of study.					
Degree of study: the 2 ^m degree of study (Engineering degree)					
Course prerequisites: none					
Assessment methods:					
To accomptish the given subject, student is obliged to be present at the lessons with the reference to appeifications introduced in the study rules for the given study programme. He/she is also obliged to					
specifications introduced in the study rules for the given study programme. He/she is also obliged to elaborate and defend the terminal or semestral work which is focused on virtual model of solid body					
systems while the numerical solution based on finite element method in ADAMS software system is used					
The mentioned solution is closely connected with the trajectory, speed or velocity and acceleration for the					
individual solid bodies.					
Learning outcomes of the course unit:					
Student is able to create virtual model of the solid body system and he/she can use numerical analysis in					
relation to ADAMS software system with the reference to the trajectory, speed or velocity and					
acceleration for the individual solid bodies.					
Course contents:					
Structural analysis of the mechanical systems. Analytical kinematics. Kinematics of the point and solid					
body in the matrix formulation. Fundamental or basic kinds of motion. Kinematic analysis of linked					
mechanical systems with the lower pairs. Analysis of the position, velocity and acceleration. Kinematic					
Recommended or required literature:					
1 Haug E. I. Computer Aided Kinematics and Dynamics Vol. I. Rasic Methods Allyn & Raycon 1080					
2. Brát, V.: : Maticové metódy v analýze a syntéze prostorových vázaných mechanických systémů.					
Academia Praha, 1981.					
3. Stejskal, V.: Kinematics and Dynamics of Machinery, Marcel Dekker, New York, 1996.					
Language: Slovak					
Remarks: —					
Evaluation history: /Grading system/					
A	B	С	D	E	FX
Excellent	Laudable	Good	Accepted results	Pass	Fail
Lecturers: prof. Ing. Jan Vavro, PhD., doc. Ing. Jan Vavro, PhD.					
Last modification: 31.03.2014					
Supervisor: prof. Ing. Darina Ondrušová, PhD.					