Information sheet for the course Silicate Engineering

University: Alexander Dubček University of Trenčín							
Faculty: Faculty of Industrial Technologies in Púchov							
Course unit code:MI-I-PV-14BCourse unit title:Silicate Engineering							
Type of course unit: optional							
Planned types, learning activities and teaching methods:							
Lecture: 2 hours weekly/26 hours per semester of study; face to face							
Seminar: 1 hour weekly/13 hours per semester of study; face to face							
Laboratory tutorial:0 hour weekly							
Number of credits: 4							
Recommended semester: 3 rd Semester in the 2 nd year full-time							
3^{rd} semester in the 2^{nd} year part-time							
Degree of study: the 2 nd degree of study (Engineer's degree)							
Course prerequisites: none							
Assessment methods:							
Working out of written verification focused on obtained knowledge during semester.							
Minimum condition for obtain of credits is obtaining min. 50% points from written certification.							
Learning outcomes of the course unit:							
The student has summaries knowledge from sphere of thermal process of silicate engineering and							
equipment of thermal technique using in silicate industry. They can recognize the basic							
principles and mathematical description of process running in individual thermal-technical							
equipments for treatment of silicate materials. They can recognize the basic thermal-technical							
calculations and their knowledge they prove to apply at solution of concrete technical problems.							
Course contents:							
1. Process running at thermal treatment of materials in silicate industry.							
2. The basic types of industrial furnaces - classification, work principle of industrial furnaces.							
3. The classification and characterization of fuels - classification of fuels according to origin							
and consistency, characterization individual types of fuels, general properties of fuels. The							
depletion of the ozone layer - the ozone and ozone layer, the causes and consequences							
creation of the ozone hole, the possible solutions.							
4. Combustion, balance of combustion.							
5. The flow of gas - types of pressures and their description, the flow of gas in horizontal							
pipelines, vertical flow of gas, chimneys.							
6. Conductive heat transfer and calculations - Fourier's equation and her description, he							
conduction planar wall, heat conduction cylindrical wall, thermal losses, insulation							
materials.							
7. Convective near transfer and calculations - Newton's equation and her description, thermal							
forced convection							
jurcea convection.							

- 8. Radiation heat transfer and calculations perfectly black solid, heat radiation between two perfectly black solids, heat radiation between two perfectly gray solids, heat radiation of gas and flame.
- 9. Combined heat transport
- 10. The heat exchangers types of exchangers and their function, heat transfer in heat exchangers.
- 11. Heat balance of the furnace heat balance of the furnace without and with heat exchanger,

thermal efficiency furnace. Periodically and continuously operating equipment and their differences.

- 12. Non-stationary heat transfer description of non-stationary heat transfer, Fourier's equation of non-stationary heat transfer, methods of solving differential equations.
- 13. Cooling, cooling curve, calculations

Recommended of required reading:

- 1. 1 Rédr, M. Příhoda, M.: Základy tepelné techniky. Praha, SNTL, 1995. 669 s.
- 2. Rédr, M. Gottwald, M. Říman, A. Rejč, R.: Tepelné výpočty a optimalizace vyzdívek prumyslových pecí. Praha, SNTL, 1975. 351 s. ISBN 40-408-75
- 3. Kuna, L.: Žiaruvzdorné výmurovky priemyselných pecí. Bratislava, SVTL, 1999. 205 S
- 4. Vošta, J. Matějka, Z. Macák, J.: Energetika. Praha: VŠCHT, 1999. 249 s. ISBN 80-7080-358-4

Language: Slovak

Remarks:

.					
0.0	0.0	0.0	0.0	0.0	0.0
А	В	С	D	E	FX

Lecturers: Ing. Darina Ondrušová, PhD.

Last modification: 31.03.2014

Supervisor: prof. Ing. Darina Ondrušová, PhD.