Information sheet for the course Physics of Solid Substances

University: Alexander Dubček University of Trenčín					
Faculty: Faculty of Industrial Technologies in Púchov					
Course unit code: M-P-3	Course unit title: <i>Physics of Solid Substances</i>				
Type of course unit: compulsory					
Planned types, learning activities and teaching methods:					
Lecture: 2 hours weekly/26 hours per semester of study; face to face					
Seminar: 2 hours weekly/26 hours per semester of study; face to face					
Laboratory tutorial: 0					
Number of credits: 8					
Recommended semester: 2 nd semester in the 1 st year full-time					
2 nd semester in the 1 st year part-time					
Degree of study: the 3 rd degree of study (PhD. degree)					
Course prerequisites: none					
Assessment methods:					
Every student folloving literature search develops the project themed by structure and physical					
properties of materials studied in his thesis. The project must be vindicated (60 points from 100					
at least).					
Learning outcomes of the course unit:					
Students have an in-depth knowledge of mater structure, structure of solids, polymeric materials					
and composites, their physical properties and methods of investigation. Students have theoretical					
and practicals skills, ability to use mathematics to solve physics problems of solid substances,					
critical thinking skills, effective written and oral communications skills.					

Course contents:

Atomic theory of matter, present concept of matter structure, quantum nature of microcosm, standard model of elementary particles and forces, superstring theory of matter – quantum theory of hydrogen atom – macroscopis structure and physical properties of solids, polymers and polymeric nanocomposites, polymer/carbon nanotube nanocomposites, introduction to tensor calculus – quantum condensates as the fifth state of matter – electrical, thermal, mechanical, dynamic mechanical and rheological properties of solids and methods of their determination – phonon theory of heat transfer in solids, relationship between electrical, thermal, dynamic mechanical properties in solids – modeling of thermal transport, electrical and dynamic mechanical processes in solids using parametric fitting of experimental data, linear and nonlinear least squares method.

Recommended of required reading:

Feynman, R.: The Feynman Lecturers on Physics I-III, California Institute of Technology-Addison Wesley Longman, 1970, ISBN-10: 0201021153.

Young, H. D., Freedman, R. A.: University Physics, Addison-Wesley, New York, 1996.

Orendáč, M.: Základy experimentálnych metód vo fyzike kondenzovaných látok, Prírodovedecká fakulta, Univerzita Pavla Jozefa Šafárika v Košiciach, 2011, ISBN 978-80-7097-871-9.

Domáce a zahraničné odborné publikácie k téme dizertačnej práce.

Language: Slovak								
Remarks:								
Evaluation history:								
	A	В	С	D	Е	FX		

Lecturers: doc. Mgr. Ivan Kopal, PhD. Last modification: 30.04.2014 Supervisor: prof. Ing. Darina Ondrušová, PhD.