Information sheet for the course Physics I

University: Alexander Dubček University of Trenčín					
Faculty: Faculty of Industrial Technologies in	n Púchov				
Course unit code: PP-P-9	Course unit title: <i>Physics I</i>				
Type of course unit: <i>compulsory</i>					
Planned types, learning activities and teach	ing methods:				
Lecture: 2 hours weekly/26 hours per semester of study; face to face					
Seminar: 1 hour weekly/13 hours per semester of study; face to face					
Laboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face					
Number of credits: 6					
Recommended semester: 2 nd semester in the 1 st year full-time					
2^{nd} . semester in the 1^{st} year part-time					
Degree of study: the 1 st degree of study (Bachelor's degree)					
Course prerequisites: PP-P-1 Mathematics I					
Assessment methods:					
Current control on each lecture – at least three positive knowledge rating. The writing final					
exam: $A - 75$ points, $B - 70$ points, $C - 65$ points, $D - 60$ points, $E - 55$ points at least.					
Learning outcomes of the course unit:					
Students have deeper knowledge of classical and modern physics, laboratory skils, ability to use					
mathematics to solve physics problems, critical thinking skills, effective written and oral					
communications skills.	6 / 33				
Course contents:					
Introduction to study of physics, paradigms of	f current physics, the relation of physics to other				
sciences and its status in modern society, Physics Nobel Price in actual year, international					
achievements of Slovak physics, meaning of physics learning for materials sciences. Matter,					
dark matter, substances, fields, space, time, space-time, incident.					
Introduction to vector analysis, differential and integral calculus.					
Paradigm of Newtons physics and special relativity theory.					
Location, motion, its description and forms, atomic theory of matters.					
Newton's laws of motion, special theory of relativity and its practical consequences.					
Energy, dark energy, gravity, introduction to general theory of relativity and its practical					
consequences, Higgs boson.					
Introduction to physical filds, introduction to electromagnetism, comparisons of gravitational					
and electrostatic field.					
Mechanics of mass point.					
Mechanics of mass-points system.					
<i>Mechanics of continuum, conservation laws.</i>					
Quantum physics paradigm, Copenhagen interpretation of quantum physics, parallel universes					
hypotesis, standard model of elementary praticles and forces, M-theory and superstring model,					
actual cosmological theories of universe.					
Introduction to thermodynamcs, heat transfer	and non-equilibrium thermodynamic systems				
Recommended of required reading:	and new equilibrium methodynumic systems				
Feynman, R.: The Feynman Lecturers on Physics I-III, California Institute of Technology-					
Addison Wesley Longman, 1970, ISBN-10: 0201021153.					
Young, H. D., Freedman, R. A.: University Physics, Addison-Wesley, New York, 1996.					
Kittel Ch.: Thermal Physics, Acad. Press, NewYork-London, 1997.					
Hawking, S.: Ilustrovaná stručná história času, Slovart, Bratislava, 2004, ISBN: 978-80-8085-					
114 mins, S. 1000 Ovana Shacha mistoria cas	a, storan, Branstara, 2007, 10011. 770 00 0005-				

920-6. Veis, Š.: Všeobecná fyzika I, Alfa, Bratislava-Praha, 1986.							
Language: Slovak							
Remarks:							
Evaluation history:							
А	В	С	D	E	FX		
Lecturers: doc. Mgr. Ivan Kopal, Ph.D.							
Last modification: 31.03.2015							
Supervisor: doc. Ing. Ján Vavro, PhD.							