Information sheet for the course Finite Element Method

University: Alex	ander Dubček U	Iniversity of Trend	čín		
Faculty: Faculty of special technology					
Course unit code: <i>ŠST/I/4-58/d</i> Course unit title: <i>Finite Element Method</i>					
Type of course unit: compulsory					
Planned types, learning activities and teaching methods:					
<i>1 lecture hour and 1 hours seminar per week face to face</i>					
Number of credits: 2					
Recommended semester: 2 nd semester in the 1 st year (full-time)					
2^{nd} semester in the 1^{st} year (part-time)					
Degree of study: II. (engineer)					
Course prerequisites: none					
Assessment methods:					
Continuous assessment: 100% participation in exercises, at least 60% attendance at lectures,					
processing and submit of semester assignments.					
Final assessment: test in a written test.					
Point-raited evaluation criteria from a total of 100 points: $(E) \ge 56$ points, $(D) \ge 65$ points, $(C) \ge 56$					
$74 \text{ points, } (B) \ge 83 \text{ points, } (A) \ge 92 \text{ points.}$					
Learning outcomes of the course unit: The student and much a factual buckledge, minimized and much and much and the					
The student can analyze factual knowledge, principles and processes, students understand the					
technical terminology and jundamental relationships of FEM in a broad context. Implements					
computational analysis of allerent types of elements and can use theoretical knowledge in					
Complex lasks in a larger conlexi.					
Fundamentals of the finite element method the basic relations and basic concepts Variational					
runaumentals of the finite element method, the basic relations and basic concepts. Variational					
two-dimensional and three-dimensional tasks. Modeling simulation and evaluation of strength					
calculations of parts and assemblies Optimization of structural design based on the results of					
stress analysis Addressing the tasks of rigid hodies mechanics - linear statics heat conduction					
dynamics and hydrodynamics					
Recommended of required reading:					
ŽMINDÁK M - GRAICIAR I - NOZDROVICKÝ $J \cdot$ Modelovanie a výpočtv v metóde konečných					
prvkov. Diel I- Modelovanie v ANSYSe. VTS ŽU. Žilina. 2004.					
KAUKIČ, M ŽMINDÁK, M KOMPIŠ, V. Počítačové metódy v mechanike: Lineárna					
analýza, 1. vyd. Žilina: Žilinská univerzita. 1998. 152 s.					
Language: Slovak					
Remarks:					
The subject is provided in the summer semester in the first year of full-time study. Compulsory					
subject.					
Evuation histor	У				
Total number of student being evaluated: 278					
A	В	С	D	Е	FX
27,18	41,21	21,03	2,8	8,50	0,00
Lectures: pro	f. Ing. Jozef Tur	za, CSc lecturer			
Ing. Lenka Rybičková, PhD assistant instructor					
Last modification: 15.4.2014					
Supervisor: prof. Ing. Jiří Balla, CSc., guarantee of the study program "Special Mechanical					
Engineering Tec	hnology".				